
Exercise 1

Question a. Given the data pairs:

(x, y) = {(−1, 0), (−0.5,−1), (0.5, 1), (1, 0)}. (1)

Give first the general form of the interpolation polynomial expressed in the La-
grange characteristic polynomials and next indicate how it is defined for an
interpolation on the given data points.

The Lagrange characteristic polynomials are given by

φk(x) =

n∏
j=0
j 6=k

x− xj
xk − xj

and the Lagrange form of the interpolant by

Πn(x) =

n∑
k=0

ykφk(x)

Computing the Lagrange characteristic polynomials gives us,

φ0(x) =

(
x+ 0.5

−1 + 0.5

)(
x− 0.5

−1− 0.5

)
=

(x+ 0.5)(x− 0.5)

(−0.5)(−1.5)

φ1(x) =

(
x+ 1

−0.5 + 1

)(
x− 0.5

−0.5− 0.5

)
=

(x+ 1)(x− 0.5)

−0.5

φ2(x) =

(
x+ 1

0.5 + 1

)(
x+ 0.5

0.5 + 0.5

)
=

(x+ 1)(x+ 0.5)

1.5

so that Π2 is given by, Π2(x) = 0φ0(x)− 1φ1(x) + 1φ2(x).

Question b. The conditioning of interpolation is expressed by the inequality

max
x∈I
|Πn(x)− Π̃n| ≤ Λ max

k∈{0,...,n}
|yk − ỹk|

wher Πn(x) is the interpolation polynomial based on the pairs (xk, yk) and Π̃n(x)
on the pairs (xk, ỹk), k = 0, . . . , n. Show that Lebesque’s constant Λ is given by
Λ =

∑n
k=0 maxx∈I |φk(x)|, where φk(x), k = 0, . . . n, are the Lagrange charac-

teristic polynomials. Give Λ for the interpolation on [−1, 0.5] and data points
give in part (a).

max
x∈I
|Πn(x)− Π̃n| = max

x∈I
|
n∑
k=0

ykφk(x)−
n∑
k=0

ỹkφk(x)|

= max
x∈I
|
n∑
k=0

φk(x)(yk − ỹk)|

≤
n∑
k=0

max
x∈I
|φk(x)(yk − ỹk)|

≤
n∑
k=0

max
x∈I
|φk(x)| max

k∈{0,...,n}
|yk − ỹk|

= Λ max
k∈{0,...,n}

|yk − ỹk|
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Question c. Define both the midpoint rule and the composite midpoint rule for
an integration of a function f over an interfval [a, b].

The midpoint rule is given by∫ b

a

f(x) dx ≈ Im(f) = (b− a)f

(
a+ b

2

)
The composite trapezoidal rule is given by∫ b

a

f(x) dx =

n−1∑
i=0

∫ xi+1

xi

f(x) dx ≈
n−1∑
i=0

Hf

(
xi + xi+1

2

)
where H = (b− a)/n and xi = a+ iH, i = 0, . . . , 1.

Question d. The error of the midpoint rule is given by Et = −(b−a)3f ′′(ξ)/24,
for some ξ ∈ [a, b]. What is the degree of exactness of this method? Why?
Show that the error of the composite midpoint rule is given by Ec = −(b −
a)H2f ′′(ζ)/24, for some ζ ∈ [a, b], where H is the length of the subintervals in
[a, b].
Hint: You may use that for any continous function g it holds that there exist
a ζ in [a, b] such taht ng(ζ) =

∑n
i=0 g(xi) for an arbitrary set of points xi,

i = 1, . . . , n in [a, b].

The degree of exactness of the midpoint rule is 1 because all linear functions
are integrated exactly (the error is 0 since the second derivative f ′′ is zero).
The error using a composite midpoint rule is given by the sum of the errors
made in each subinterval,

Ec =

n∑
i=0

Eti =

n∑
i=0

−(xi+1 − xi)3f ′′(ξi)/24

= −H
3

24

n∑
i=0

f ′′(ξi)

Using the hint we get,

Ec =

n∑
i=0

Eti = −H
3

24
nf ′′(ζ), n = (b− a)/H,

= −(b− a)
H2

24
f ′′(ζ),

for some zeta ∈ [a, b].
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Exercise 2

Question a. Consider the linear system Ax = b and suppose that the matrix
A is an m × n matrix with m > n of full rank (i.e. the columns form an
independent set of vectors) leading to an overdetermined equation.

Question a.i. One way of solving this is minimizing (Ax − b, Ax − b) over
x. Show that this minimization leads to ATAx = AT b, where ATA is a square
matrix of order n.

We want to minimize the dot product with respect to x, that is for each i =
0, . . . n we want,

0 =
∂

∂xi
(Ax− b, Ax− b)

= (
∂

∂xi
(Ax− b), Ax− b) + (Ax− b, ∂

∂xi
(Ax− b))

Now using ∂x
∂xi

= ei with ei is the standard basis vector,

0 = (Aei, Ax− b) + (Ax− b, Aei))
= 2(Aei, Ax− b)
= 2(ei, A

TAx−AT b)

Since this should hold for all i = 0, . . . n it follows that we must have,

ATAx−AT b = 0

This means that we need to solve the system ATAx = AT b where the matrix
ATA is a n× n matrix.

Question a.ii. What is the numerical problem with solving the equation in the
previous part?

By solving for ATAx = AT b we increase the condition number making the so-
lution more sensitive to round off errors.

Question b. Consider the iteration x(k+1) = Ax(k) with x(0) given and suppose
that one eigenvalue λ1 of A is bigger in absolute value than all others. Moreover,
A has a complete set of eigenvectors.

Question b.i. Show that x(k), will converge to the eigenvector associated to
λ1 if x(0) has a nonzero component in the direction of this eigenvector. Also
indicate the convergence factor.

First we write x(0) =
∑n
i=1 αivi where vi is the eigenvector of A correspond-

ing to the eigenvalue lambdai. It follows that,

x(k) = Ax(k) = Akx(0) = Ak
n∑
i=1

αivi =

n∑
i=1

αiλ
k
i vi

= λk1(α1v1 +

n∑
i=2

αi(
λi
λ1

)kvi︸ ︷︷ ︸
Goes to 0 as k →∞, since | λiλ1 | < 1

)

Thus x(k) converges to the direction of v1 with a convergence factor of λ2

λ1
.
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Question b.ii. How can we obtain an estimate of λ1 during the iteration?

Since x(k+1) = Ax(k) ≈ λ1x
(k), xk ≈ γv1. We can approximate λ1 by,

λ
(k)
1 =

(x(k+1), xk)

(x(k), xk)
or λ

(k)
1 =

x
(k+1)
i

x
(k)
i

wher the index i is chosen to be corresponding to the largest element of x(k) in
absolute sense.

Question b.iii. Assume |λ1| 6= 1. Depending on whether it is bigger or less
than one, what will eventually happen if we perform the iteration on a computer?
And what is done to prevent this situation if we are only interested in finding
lambda1 and the associated eigenvector?

When |λ| < 1 then x(k) → 0 and at some point it will be rounded to 0 due
to floating point arithmetic.
When |λ| > 1 then x(k) → ∞ and it will become too large to fit in the floating
point representation used by Matlab.
We may prevent this by scaling xk in each iteration.

y(k+1) = Ax(k), x(k+1) =
y(k+1)

||y(k+1)||
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Exercise 3

Consider the nonlinear system f(x) = 0, where f is a mapping from Rn to Rn.

Question a. Derive Newton’s method for the above system and indicate which
linear system has to be solved in each step.

We may use the taylor series of f to derive Newton’s method,

f(x) = f(x0) +Df(x0)(x− x0) + h.o.t.

where Df is the Jacobian matrix of f . If f(+x) = 0 then, (ignoring higher order
terms) we get,

0 = f(x0) +Df(x0) (x− x0)︸ ︷︷ ︸
∆x

Here ∆x is unknown and needs to found by solving Df(x0)∆x = −f(x0). New-
ton’s method for systems is given by the following process,

Solve for ∆x Df(xk)∆x = −f(xk)

Update xk+1 = xk + ∆x

Question b. Suppose f1 = sin(x1 + 2x2 − 1), f2 = arctan(x2 − x1). Give the
Jacobian matrix of f .

J =

[
∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

]
=

[
cos (x1 + 2x2 − 1) 2 cos (x1 + 2x2 − 1)

−1
1+(x2−x1)2

1
1+(x2−x1)2

]
Question c. Zeros of functions can be found by a fixed point method x(k+1) =
φ(x(k)). Show that this fixed point method will converge if |φ′(α) < 1 and x(0)

close enough to the fixed point α.

For a fixed point we have α = φ(α) and x(k+1) = φ(x(k)). Using the mean
value theorem we may find,

x(k+1) − α = φ(x(k))− φ(α) = φ′(ξ(k))(x(k) − α)

where ξ(k) ∈ (xk, α). If x(0) is chosen such that |φ(ξ(k))| < 1 for all k, then it
follows that,

|x(k+1) − α| ≤ |φ′(ξ(k))||(x(k) − α)|
≤ |φ′(ξ(k))||φ′(ξ(k−1))||(x(k−1) − α)|
≤ Lk|x(0) − α|

where L = maxi=0,...,k{|φ′(ξ(k))|} < 1. It follows that x(k) converges to α.

Question d. Derive Aitken’s extrapolation formula,

x̃(k+1) =
x(k+1)x(k−1) − (x(k))2

x(k+1) − 2x(k) + x(k−1)

where x̃(k+1) is the extrapolated value based on x(k−1), x(k) = φ(x(k−1)), and
x(k+1) = φ(x(k)) = φ(φ(x(k−1))).
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Recall xk+1 = φ(xk) and

x(k+1) − α = φ(x(k))− φ(α) = φ′(ξ(k))(x(k) − α)

where ξ(k) ∈ (xk, α). Rewriting gives,

α
(

1− φ(x(k))
)

= xk+1 − φ(x(k))xk ⇒ α =
xk+1 − φ(x(k))xk

1− φ(x(k))

We now want to find a “nice” approximation of φ′(ξ(k)) using the forward finite
difference method.

φ′(ξk) ≈ φ(xk)− φ(xk−1)

xk − xk−1
=
xk+1 − xk
xk − xk−1

=
∆xk+1

∆xk

we may now use this approximation to derive Aitken’s extrapolation formula,

α̃ = =
xk+1 − ∆xk+1

∆xk
xk

1− ∆xk+1

∆xk

=
∆xkxk+1 −∆xk+1xk

∆xk −∆xk+1

=
(xk − xk−1)xk+1 − (xk+1 − xk)xk

(xk − xk−1)− (xk+1 − xk)

=
xk−1xk+1 − x2

k

xk+1 − 2xk + xk−1
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Exercise 4

Consider a system of ODEs,

d

dt
y(t) = f(t, y(t)),with y(0) = y0 (2)

Question a. Consider the method uk+1 = uk−1 + 2∆tf(tk, uk)

Question a.i. State the root condition. Show that this method satisfies this
condition. What does this mean for stability?

If we denote with rj the roots of the characteristic polynomial,

π(r) = rp+1 −
p∑
j=0

ajr
p−j

then the numerical method satisfies the root condition if |rj | ≤ 1 and if |rj | = 1
then we must have π′(rj) 6= 1.

In this case we have π(r) = r1+1 − 1r1−1 = r2 − 1 = 0 ⇔ r = ±1 and
π′(r) = 2r. Hence this method satisfies the root condition which implies that the
method is zero-stable.

Question a.ii. Show that the local truncation error is of second order in ∆t.
What is the conclusion for convergence, if you combine this with part (i).

The local truncation error is given by,

τn+1(∆t) =
yn+1 − yn−1 − 2∆tf(tn, yn)

∆t

where yn is an exact solution to the ODE. We may approximate yn+1 and y −
n− 1 using a Taylor series at yn,

yn+1 = yn + ∆ty′(tn) +
∆t2

2
y′′(tn) +

∆t3

6
y′′′(ξ)

yn−1 = yn −∆ty′(tn) +
∆t2

2
y′′(tn)− ∆t3

6
y′′′(η)

subtracting both approximations gives,

yn+1 − yn−1 = 2∆ty′(tn) +
∆t3

6
(y′′′(ξ)− y′′′(η))

It follows that the local truncation error is given by,

τn+1(∆t) =
∆t2

6
(y′′′(ξ)− y′′′(η))

Which is of second order. Hence the method is consistent and as we’ve shown
that it is also zero stable, it is convergent.

Question b. Consider on [0, 1] for u(x, t) the diffusion equation ∂u/∂t =
∂2u/∂x2 + xexp(−t) with the initial condition u(x, 0) = sin(πx) and boundary
conditions u(0, t) = sin2(t) and u(1, t) = 0. Let the grid in x-direction be given

by xi = i∆x where ∆x = 1/m. Show that, by using ∂2u
∂x2 ≈ u(xi+1,t)−2u(xi,t)+u(xi+1,t)

∆x2

in the PDE, one obtains a system of ordinary differential equations (ODEs) of
the above form. Give the components of the vector function f and the initial
vector.
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After discretization we have,

dui
dt

=
ui+1 − 2ui + ui−1

∆x2
+ xie

−t

for i = 1, . . . ,m− 1 and for i = 0 and i = m we have the boundary conditions,

u0(t) = sin2(t),

um(t) = 0.

the initial condition for i = 1, . . . ,m− 1 is given by,

ui(0) = sin(πxi)

lastly the right hand side of (2) is given by,

f1(t) =
−2u1 + u2

∆x2
+ x1e

−t +
sin2(t)

∆x2

fi(t) =
ui−1 − 2ui + ui+1

∆x2
+ xie

−t i = 2, . . . ,m− 2

fm−1(t) =
um−2 − 2um−1

∆x2
+ xm−1e

−t
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